A solar photovoltaic system with ideal efficiency close to the theoretical limit.
نویسندگان
چکیده
In order to overcome some physical limits, a solar system consisting of five single-junction photocells with four optical filters is studied. The four filters divide the solar spectrum into five spectral regions. Each single-junction photocell with the highest photovoltaic efficiency in a narrower spectral region is chosen to optimally fit into the bandwidth of that spectral region. Under the condition of solar radiation ranging from 2.4 SUN to 3.8 SUN (AM1.5G), the measured peak efficiency under 2.8 SUN radiation reaches about 35.6%, corresponding to an ideal efficiency of about 42.7%, achieved for the photocell system with a perfect diode structure. Based on the detailed-balance model, the calculated theoretical efficiency limit for the system consisting of 5 single-junction photocells can be about 52.9% under 2.8 SUN (AM1.5G) radiation, implying that the ratio of the highest photovoltaic conversion efficiency for the ideal photodiode structure to the theoretical efficiency limit can reach about 80.7%. The results of this work will provide a way to further enhance the photovoltaic conversion efficiency for solar cell systems in future applications.
منابع مشابه
The effect of SiO2 nanoparticle on the performance of photovoltaic thermal system: Experimental and Theoretical approach
The low conversion efficiency of solar cells produces large amounts of thermal energy to the cells, and with an increase in the temperature of solar cells, their electrical efficiency decreases. Therefore, a hybrid photovoltaic thermal system improves the overall efficiency of the system by adding thermal equipment to the solar cell and removing excessive heat from these cells. In this paper, w...
متن کاملLimit of efficiency for photon-enhanced thermionic emission vs. photovoltaic and thermal conversion
Conversion of sunlight by photon-enhanced thermionic emission (PETE) combines a photonic process similar to photovoltaic cells, and a thermal process similar to conventional thermionic converters. As a result, the upper limit on the conversion efficiency of PETE devices is not the same as the Shockley– Queisser (SQ) limit that corresponds to the bandgap of the absorbing material, nor to the Car...
متن کاملProposing New Algorithm for Modeling of Regenerative Fuel Cell (RFC) System
Regenerative Fuel Cell (RFC) systems are used for the enhancement of sustainable energy aspect in conventional fuel cells. In this study, a photovoltaic-electrolyzer-fuel cell integrated cycle has been presented. The proposed system has been designed as a novel approach for alleviating the restrictions on energy streams in the RFC systems. Modeling of the system has been performed from the mas...
متن کاملEstimating Efficiency of Monocrystalline and Polycrystalline Photovoltaic Panels Using Neural Network Models
The energy production analysis of a photovoltaic system depends on the panels tempreture and solar radiation. An endless and free source of solar energy received at the Earth's surface depends on the geographical location, different hours of day and seasons of the year.Hence, its correct evaluation is a strategic factor for the feasibility of a solar system. in this paper, a new method of ener...
متن کاملDesign of Maximum Power Point Tracking in Solar Array Systems Using Fuzzy Controllers
In recent year's renewable energy sources have become a useful alternative for the power generation. The power of photovoltaic is nonlinear function of its voltage and current. It is necessary to maintain the operation point of photovoltaic in order to get the maximum power point (MPP) in various solar intensity. Fuzzy logic controller has advantage in handling non-linear system. Maximum power ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 20 1 شماره
صفحات -
تاریخ انتشار 2012